Fluorescence quenching in luminescent porous silicon nanoparticles for the detection of intracellular Cu2+.
نویسندگان
چکیده
After microwave-induced hydrosilylation reaction with 10-undecenoic acid, luminescent porous silicon nanoparticles (LPSiNPs) showed excellent fluorescence stability under physiological conditions. Fluorescence quenching in as-prepared LPSiNPs was highly sensitive with the concentration of Cu(2+) at μmol L(-1) level, which could be further applied to the detection of intracellular Cu(2+).
منابع مشابه
Sensitive detection of copper ions via ion-responsive fluorescence quenching of engineered porous silicon nanoparticles
Heavy metal pollution has been a problem since the advent of modern transportation, which despite efforts to curb emissions, continues to play a critical role in environmental pollution. Copper ions (Cu2+), in particular, are one of the more prevalent metals that have widespread detrimental ramifications. From this perspective, a simple and inexpensive method of detecting Cu2+ at the micromolar...
متن کاملIn Vivo Time-gated Fluorescence Imaging with Biodegradable Luminescent Porous Silicon Nanoparticles
Fluorescence imaging is one of the most versatile and widely used visualization methods in biomedical research. However, tissue autofluorescence is a major obstacle confounding interpretation of in vivo fluorescence images. The unusually long emission lifetime (5-13 μs) of photoluminescent porous silicon nanoparticles can allow the time-gated imaging of tissues in vivo, completely eliminating s...
متن کاملAn Innovative Metal Ions Sensitive “Test Paper” Based on Virgin Nanoporous Silicon Wafer: Highly Selective to Copper(II)
Developing an innovative "Test Paper" based on virgin nanoporous silicon (NPSi) which shows intense visible emission and excellent fluorescence stability. The visual fluorescence quenching "Test Paper" was highly selective and sensitive recognizing Cu2+ at μmol/L level. Within the concentration range of 5 × 10-7 ~50 × 10-7mol/L, the linear regression equation of IPL = 1226.3-13.6[CCu2+] (R = 0....
متن کاملDevelopment of Fluorescent FRET Probes for “Off-On” Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution
A new type of fluorescence "off-on" probe was designed for L-Cysteine (L-Cys) based on the fluorescence resonance energy transfer (FRET) between negatively charged amino-capped porous silicon nanoparticles (SiNPs) and positively charged citrate-stabilized Au nanoparticles (AuNPs). In this proposed FRET immunosensor, novel water-soluble amino-conjugated porous SiNPs in ethanol with excellent pho...
متن کاملMCR of the quenching of the EEM of fluorescence of Aflatoxins (B1, G1) by Gold nanoparticles
In This research, gold nanoparticles were synthesized and functionalized by the antibody of aflatoxins. The quenching of the fluorescence of excitation emission matrices (EEM) of two type of aflatoxins (B1, G1), provoked by the gold nanoparticles, was studied by principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS). These aflatoxins show q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 138 13 شماره
صفحات -
تاریخ انتشار 2013